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Every second, the body produces 2 million red blood cells through a process called erythropoiesis. Erythro-
poiesis is hierarchical in that it results from a series of cell fate decisions whereby hematopoietic stem cells
progress toward the erythroid lineage. Single-cell transcriptomic and proteomic approaches have revolu-
tionized the way we understand erythropoiesis, revealing it to be a gradual process that underlies a progres-
sive restriction of fate potential driven by quantitative changes in lineage-specifying transcription factors.
Despite these major advances, we still know very little about what cell fate decision entails at the molecular
level. Novel approaches that simultaneously measure additional properties in single cells, including chroma-
tin accessibility, transcription factor binding, and/or cell surface proteins are being developed at a fast pace,
providing the means to exciting new advances in the near future. In this review, we briefly summarize the
main findings obtained from single-cell studies of erythropoiesis, highlight outstanding questions, and sug-
gest recent technological advances to address them. © 2024 ISEH – Society for Hematology and Stem
Cells. Published by Elsevier Inc. All rights reserved.
HIGHLIGHTS

� An overview of erythropoiesis and new discoveries using single-
cell technologies to understand cell fate decisions is provided.

� The importance of determining the likelihood of cell fate progres-
sion and key factors involved in cell fate determination is
highlighted.

� Creating predictive gene regulatory networks is essential for a
comprehensive regulatory model of erythropoiesis.

� Tools to identify clusters, trajectories, and create gene regulatory
networks for a better understanding of cell fate are described.

Erythropoiesis is an important cellular differentiation process that
leads to the formation of red blood cells from hematopoietic stem
cells (HSCs) [1,2]. Owing to sophisticated mouse models [3] and
human ex vivo differentiation systems that recapitulate all steps of dif-
ferentiation [4], erythropoiesis has been comprehensibly analyzed,
which makes it an ideal model system to address outstanding ques-
tions in biology. For example, enhancers were first characterized
through extensive analyses of transcription at the ß-globin locus dur-
ing erythroid differentiation [5]. More recently, erythropoiesis was
among the first complete cellular differentiation systems analyzed by
droplet-based single-cell RNA sequencing (scRNA-seq) [6−8] and
single-cell proteomics [9]. In this review, we highlight these (and other
[10,11]) studies, which together with novel experimental tools and
innovative analysis methods, hold the promise to advance beyond
dence to: Marjorie Brand, University of Wisconsin School of
c Health, Madison, WI; E-mail: mbrand3@wisc.edu
the cellular level toward a mechanistic understanding of cell fate
choice in erythropoiesis.
CURRENT STATE OF KNOWLEDGE FROM SINGLE-
CELL STUDIES OF ERYTHROPOIESIS

One of the main findings from early transcriptomic [6−8,12] and
proteomic [9] single-cell profiling was the gradual nature of erythro-
poiesis whereby HSCs undergo a progressive restriction of fate poten-
tial driven by quantitative changes in lineage-specifying transcription
factors (LS-TFs) [13]. This concept, which is supported by both tran-
scriptomic and proteomic data, provided a very precise description of
the early stages of erythropoiesis, showing a continuum of differentia-
tion with the accumulation of some known as well as novel popula-
tions at specific points along the erythroid trajectory. Furthermore,
these studies revealed for the first time coexpression of LS-TFs in indi-
vidual multipotent progenitors at both RNA and protein levels.
Importantly, overexpression experiments demonstrated that quantita-
tive changes in the level of a nonerythroid transcription factor (TF) is
sufficient to deviate progenitors from their preferred erythroid trajec-
tory toward a nonerythroid lineage [9], providing proof-of-principle
that quantitative changes in TFs at the protein level direct cell fate
decisions in individual cells.

Another notable finding was the identification of alternative paths
to the traditional hematopoietic tree, including an unexpected cou-
pling of the erythroid and the basophil lineages, which again is sup-
ported by both transcriptomic and proteomic data [6,7,9].
0301-472X/© 2024 ISEH – Society for Hematology and Stem Cells. Published by
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More recently, the Cellular Indexing of Transcriptomes and Epito-
pes by sequencing (CITEseq) approach [14] that provides simulta-
neous measures of the transcriptome and cell surface proteins in
single cells (Figure 1, Table 1, and more details in section III) was used
in several studies of erythropoiesis. For example, Doty et al. [11] iden-
tified a “death” trajectory that is taken by a significant proportion of
erythroid progenitors at the proerythroblast stage when they express
high levels of heme. In this study, the coupling of cell surface proteins
to the transcriptome was instrumental in validating the erythroid dif-
ferentiation trajectory. Furthermore, this study exemplifies the power
of single-cell approaches to identify small populations of proapoptotic
cells that could not have been isolated or expanded in vitro without
altering their phenotype. Thus, the implementation of single-cell tech-
nologies presents a viable alternative to the use of fluorescent-acti-
vated cell sorting (FACS) for specialized cell populations. Another
study using CITEseq led to the identification of granulocytic precur-
sors and macrophages that physically associate with erythroid cells in
the bone marrow as part of the erythro-myeloblastic island [10].
Again, cell surface markers coupled to transcriptomic measurements
allowed for a more precise definition of those cells, highlighting the
usefulness of coupling these two layers of information.
Figure 1Multimodal measurements in single cells for erythropoiesis.
tomics using MERFISH/SeqFISH techniques. This is made possibl
spatial measurements from an organ section, such as bone marrow
erythropoiesis. It is possible to select any stage of differentiation to p
the concept of a single droplet encapsulation containing cells and b
surface marker and/or mitochondrial DNA measurements dependin
nucleus. From here, it is possible to perform numerous measureme
These include chromatin accessibility, transcriptomes, histone modi
ing the availability of TFs (right panel). Made with Biorender.
OUTSTANDING QUESTIONS

Single-cell transcriptomic has now become a standard approach to
examine phenotypes and phenotypic changes during development
and disease. However, major questions remain that go beyond the
description of lineages and their relationships. In this section, we high-
light three questions that we believe have the potential to be
addressed by recently developed single-cell multiomics approaches
(Figure 2).

Infer Cell fate Probability Along the Erythropoietic Lineage

Single-cell measurements that sample large numbers of cells at multi-
ple stages of differentiation provide an unprecedented opportunity
to infer a probability for each cell derived from HSCs to become ery-
throid or to diverge and become another cell type. Such fate maps
are indispensable to understanding the mechanism of cell fate deci-
sion because they allow one to correlate changing molecular proper-
ties to the dynamic of cell fate decisions. Several approaches have
been developed to infer fate probability along differentiation trajecto-
ries, including PBA [15], FateID [16], Palantir [17] and more recently
CellRank [18]. One method to estimate the extent to which inferred
In this diagram, we first show the possibility of spatial transcrip-
e by the commercial MERSCOPE platform, which can perform
(left panel). The panel on the right shows differentiation during
erform single-cell multiomics measurements. We then represent
eads. We first zoom in to show that it is possible to perform cell
g on the technique chosen. We then zoom in to focus on the
nts simultaneously or not, depending on the chosen technique.
fications, and/or TFs binding as well as the possibility of measur-



Table 1 Summary of single-cell multiomics approaches

Method Target Analysis References

SC RNA Transcriptomes Scanpy
Seurat
PAGA
SCENIC
SC-MTNI

[44,46,48,63,66]

CITEseq Transcriptomes
Cell surface proteins

Scanpy
Seurat
PAGA
SCENIC
TotalVI
scArches

[14,44,46,48,58,61,63,66]

Sci-CAR Transcriptomes
Chromatin accessibility
Mitochondrial DNA

Scanpy
Seurat
MultiVI
Mira
SC-MTNI
SCENIC/SCENIC+

[44,46,60,62,63,65,66]

TEA-seq Transcriptomes
Cell surface proteins
Chromatin accessibility
Mitochondrial DNA

Scanpy
Seurat
MultiVI
TotalVI
Mira
SC-MTNI
SCENIC/SCENIC+

[44,46,52,58,60,62,63,65,66]

DOGMAseq Transcriptomes
Cell surface proteins
Chromatin accessibility
Mitochondrial DNA

Scanpy
Seurat
MultiVI
TotalVI
Flowjo
Mira
SC-MTNI
SCENIC/SCENIC+

[44,46,53,58,60,62,63,65,66]

SC-Multi-CUT&Tag Multi-TF binding
Histone modifications
DNA−protein interactions

Seurat
Slingshot
MEME
SAMtools

[46,54,55,67−69]

In this table, we summarize the main multiomics approaches detailed in this review. For each approach, we specify the different targets and
measurements that these different techniques can provide. We then report the available software and tools associated with each technique that
are capable of analyzing these data using multimodalities. References for each of these measurement and analysis techniques are provided.
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probability truly reflects cell fate is to combine lineage tracing with
scRNA-seq at different time points such that gene expression at one
time point can be correlated to fate at a later time point. Such
approaches, termed lineage tracing with single-cell RNA sequencing
(LT-scSeq), require the introduction of genetic barcodes that are
unique, heritable, and detectable by sequencing and are therefore
typically limited to ex vivo differentiation systems, transplanted cells
and/or genetically engineered mice [19−23]. Nevertheless, these
approaches are very powerful as they revealed for example that cell
fate decision occurs earlier than predicted by scRNA-seq and that the
transcriptome alone (as measured by scRNA-seq) is not sufficient to
accurately predict cell fate [20]. This suggests that additional heritable
properties (e.g., chromatin accessibility) contribute to fate determina-
tion. Interestingly, a recently developed inducible Cas9 barcoding
mouse line (DARLIN) that combines lineage tracing with simulta-
neous measures of transcription, DNA methylation and chromatin
accessibility in single cells (using a plate-based approach named
Camellia-seq) showed that DNA methylation is strongly associated to
clonal memory [24], which highlights the importance of incorporat-
ing DNA methylation measurements in cell fate decisions models.

Although genomic barcodes provide a practical method for lineage
reconstruction, somatic mutations in mitochondrial DNA also allow
clonal tracking [25], offering a potential approach for human in vivo
lineage tracing.
Measure the Key Players of Cell Fate Decision and Their
Quantitative Changes Along the Erythroid Trajectory

The realization that transcripts alone are not sufficient to estimate cell
fate probabilities highlights the need to measure additional molecular
properties in single cells. In this section, we propose a list of molecular
players that are likely to be major actors of the cell fate decision process.



Figure 2 Single-cell multi-omics workflow for erythropoiesis. In this figure, we illustrate one of the possible paths for a multiomics
experiment at the single-cell level for the different stages of differentiation during erythropoiesis. The first part (from top to bottom)
shows the four main stages of differentiation from multipotent progenitors to mature cells. We have then represented the different
stages of differentiation in more details for each of the four main stages. We then created a cartoon representation of a possible mea-
surement modality that can be obtained simultaneously or individually. These modalities can include the measurement of cell surface
proteins, RNA, chromatin accessibility, and transcription factor binding. The final diagram explains the main analyses that can be
conducted, including clustering, trajectory, and gene regulatory networks. Made with Biorender.
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Proteins. We and others have shown dramatic discrepancies
between transcript levels and protein levels, mostly during dynamic
processes, such as erythropoiesis [26]. Such discrepancies are particu-
larly relevant for lineage-specifying TFs and signaling TFs [27] that
together represent the main drivers of cell fate decisions and should
therefore be measured at the protein level. Furthermore, these pro-
teins often work in a dose-dependent manner [28−30] and should
therefore also be quantified, ideally using absolute quantification
approaches that provide copy-number measurements [31]. Because
they mediate the function of TFs, cofactors including chromatin-mod-
ifying enzymes should also be quantified at the protein level. Finally,
cell surface proteins (not RNAs) should be measured to facilitate puri-
fication of prospective populations (Figure 2).

Chromatin accessibility. Given that chromatin is inherently refrac-
tory to transcription, measures of chromatin opening offer critical
information on the portions of the genome that have the potential to
be transcribed. Although regions of opened chromatin are often
used to infer TF binding through DNA-binding motifs enrichment,
one must keep in mind that these inferences are likely compromised
by the complexity of the rules governing TF binding, including large
redundancies between TFs of the same family [32]. Thus, it is impor-
tant to measure TF binding directly (Figure 2).
TF genomic binding. To facilitate identification of TF target genes, it
is necessary to directly measure TF genomic binding in single cells.

Histones and DNA modifications. Chromatin modifications pro-
vide critical information pertaining to gene expression and should
therefore also be measured in single cells.

Spatial transcriptomics. Single-cell transcriptomic approaches, such
as multiplexed error robust fluorescence in situ hybridization (MER-
FISH) [33] or sequential fluorescence in situ hybridization (SEQFISH
+) [34], provide invaluable information on cell-to-cell interactions or
the position of cells within a tissue. However, these approaches are
difficult to combine with the simultaneous measures of other modali-
ties by high-throughput multiomics approaches (Figure 1).

Although single-cell measurements are often performed in stem
and progenitor cells, it may be important to analyze all cells along the
erythroid trajectory, including cells that are thought to be committed.
Indeed, our data [26] and that of others [35] showed that TFs from
nonerythroid lineage are still expressed in late erythroid progenitors.
Furthermore, transgenic mouse experiments combining the knockout
of LSD1 with lineage tracing revealed that late erythroid progenitors
can deviate toward the myeloid lineage, which suggests these cells
have not completely lost their myeloid potential [35,36].
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Understand Cell Fate Decisions by Building Predictive Gene
Regulatory Networks that Integrate the Main Players of
Erythropoiesis

Potentially one of the most challenging aspects of understanding
erythropoiesis is involves integrating the main players described above
into a biologically meaningful model that takes into account all regula-
tory aspects underlying cell fate decisions. Ideally, such a model
should be dynamic, quantitative, and predictive. Several attempts
have been made at building gene regulatory networks of erythropoie-
sis [37,38], including our own temporal model that integrates quanti-
tative changes in protein and mRNA abundances of transcription
factors [26]. However, these models have not been built based on
single-cell measurements. In the next section, we highlight some
selected technical and analytical advances that we believe will be key
in the progression toward a global regulatory model for erythropoiesis
at the single-cell level.
SINGLE-CELL MULTIOMICS TOOLS TO DECIPHER
ERYTHROPOIESIS

Although bulk RNA sequencing has been widely utilized in numer-
ous fields of biology and health research, the primary function of this
technique is to measure RNA in many cells within a sample of inter-
est, allowing for the determination of the average expression level of
individual genes from the same sample [39]. However, when study-
ing complex systems, such as erythropoiesis, and the various patholo-
gies associated with this lineage, it is necessary to have more detailed
information on the heterogeneity of the samples of interest and each
cell population. To address this issue, single-cell RNA sequencing has
gained importance as a means of compensating for the lack of infor-
mation on the heterogeneity of cell groups. Many research groups are
now utilizing this technology to determine the gene expression of
each cell, providing critical insights into the transcriptional activity and
fate decisions of these cell populations [39].

The most widely used single-cell approach is based on a single-cell
suspension and gel bead emulsion (GEM) that creates a fine droplet
of oil containing a single cell (Figure 1). This process, coupled with
next-generation sequencing, has drastically reduced the cost of this
technology. Other methods, such as plate-based approaches that pro-
vide for deeper sequencing of individual cells or nuclei, are more
expensive and challenging [40].

Data analysis generally begins with clustering based on the Lou-
vain or Leiden algorithms [41,42]. Combined with t-distributed Sto-
chastic Neighbor Embedding (t-SNE), Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) or
Force Atlas (FA) graphical representations, the SCANPY, scVI-tools,
Bioconductor and Seurat workflows then allow one to categorize all
samples by cell type based on RNA expression, thus providing infor-
mation on sample heterogeneity [43−47] (Table 1). In addition, fur-
ther studies can be performed using trajectory analysis tools, such as
Partition-Based Graph Abstraction (PAGA) [48] or sc-Velo [49],
which select or detect a root cell and use RNA information to infer
cell trajectories. These tools also incorporate pseudotime into their
approach to reconstruct differentiation pathways (Figure 2; Table 1).

Using scRNA-seq techniques, numerous studies have demon-
strated the diversity and complexity of the hematopoietic differentia-
tion process, which involves precise regulation of cell fate with a clear
hierarchical structure at different stages [13]. However, scRNA-seq
only provides information on transcriptomes and not on proteins.
Although single-cell protein data can also be obtained using
approaches such as Cytometry by Time Of Flight (CyTOF) [9] to
measure transcription factors, this approach is limited to 50 proteins
that can be measured simultaneously. Finally, scRNA-seq does not
provide information on other important molecular layers, such as
chromatin accessibility and/or cell surface markers that are necessary
to purify cell populations of interest. These issues can be addressed at
least partly by single-cell multiomics approaches that provide simulta-
neous information on several layers of information, including tran-
scriptome, chromatin opening, and/or cell surface proteins.
Multiomics approaches have been developed through barcoding,
enabling each cell to be marked with a unique marker identifier and
each layer of information to be marked with different barcodes.
These techniques generally couple two layers of data. Furthermore,
methods have recently been developed that simultaneously cover up
to three layers [50]. Below, we describe selected single-cell
approaches (experimental and analytical) that go beyond sc-RNAseq
that we find the most promising for shining light onto the mechanism
underlying cell fate decision mechanisms in erythropoiesis.

Experimental Advances

CITEseq (cellular indexing of transcriptomes and epitopes by
sequencing) [14] (Figure 1; Table 1). The principle of CITEseq is
based on incubating cells with a cocktail of barcoded antibodies that
can extend to cover several hundred cell surface proteins. Once the
incubation is complete, the cells undergo a GEM process for single-
cell droplet encapsulation, followed by cell lysis (Figure 1). Then, anti-
body barcodes are hybridized to reverse transcript oligonucleotides
bound to beads for future library preparation and sequencing. CITE-
seq combines information on the transcriptome and the cell surface
proteins and allows the construction of precise cell trajectories during
different stages of development based on scRNA-seq and the expres-
sion of cell surface proteins in single cells [14]. The strength of the
CITEseq approach is provided by the information on cell surface pro-
teins, which makes it possible to isolate cell populations for further
experiments and in vitro or in vivo validation.

Sci-CAR (single-cell combinatorial indexing for chromatin
accessibility and RNA) [51] (Figure 1; Table 1). Transcriptome
and cell surface proteins are not the only possible combinations for
multiomics since techniques can now also integrate chromatin acces-
sibility. Indeed, single-cell multiomics approaches can integrate
scRNA-seq with transposase-accessible chromatin (scATAC-seq). First,
the nuclei are separated and spread out in a plate. Then, specific barc-
odes are added to each well along with RNA and ATAC indexes. The
ATAC barcodes also include Tn5 transposase, which cuts at regions
of open chromatin. This technique combines scATAC-seq and
scRNA-seq on several thousand cells, providing information on the
dynamics of chromatin accessibility and gene expression. Further-
more, 10X genomics now offers a commercial kit for the simulta-
neous measure of scRNA and scATAC in microfluidic systems.
Overall, this technique provides a better understanding of the role of
epigenetics in cell fate decisions and memory processes.

TEA-seq [52] and DOGMAseq [53] (Figure 1; Table 1). These
recently developed techniques combine three layers of data, includ-
ing transcripts, cell surface proteins (i.e., epitopes), and chromatin
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accessibility, and are thus termed trimodal (Figure 1). They are based
on the principle of CITEseq, but the cells are permeabilized during
the preparation process after antibody incubation. Once permeabi-
lized, the cells are incubated with the Tn5 transposase, which enters
the nucleus and introduces DNA barcodes into the open chromatin
of each cell. The cells are then isolated by GEM in microdroplets con-
taining specific beads. These beads contain poly-A-tails for the isola-
tion of the transcriptome and cell surface proteins tags. ATn5 oligo is
also present for the ATAC-seq library. This trimodal technique cap-
tures transcriptomes, cell surface proteins, and open chromatin to
provide a more complete analysis of the differentiation process and
the possibility of purifying rare cell groups for further study [52,53].

In addition, DOGMAseq has been developed to provide the
added possibility of measuring a fourth modality, i.e., mitochondrial
DNA (mtDNA) [53] (Figure 1; Table 1). DOGMAseq offers two pos-
sible paths to achieve this. One involves cell fixation to preserve
mtDNA, whereas the other involves a slight permeabilization similar
to the TEA-seq protocol, which allows for the detection of cell surface
proteins. In summary, DOGMAseq has demonstrated that mtDNA
can be detected as a fourth modality if combined with fixation or
slight permeabilization. Fixation is better for detecting mtDNA, and
permeabilization is better for detecting cell surface proteins. However,
it is important to note that TEA-seq can also detect mtDNA using the
permeabilization with digitonin approach [52]. Thus, it is possible to
use either approach depending on the specific question being asked.
Using DOGMAseq, the authors have demonstrated its effectiveness
in resolving bone marrow heterogeneity [53].
Sc-multi-CUT&Tag (single-cell multi cleavage under targets and
tagmentation) [54] (Figure 1, Table 1). Although the above techni-
ques provide a wealth of information on chromatin opening, the tran-
scriptome, and cell surface proteins, it is important to realize that
motif enrichment as measured by ATACseq data does not necessarily
equate to transcription factor binding. Furthermore, the above
approaches do not provide information on histone modifications. To
obtain information on DNA−protein interactions or histone modifi-
cations in single cells it is possible to use sc-multi-CUT&Tag [54], an
approach adapted from CUT&Tag [55] that combines antibodies
against multiple transcription factors, cofactors, and/or histone modi-
fications. The sc-multi-CUT&Tag method provides information on
the interactions between multiple proteins with chromatin by com-
bining antibodies directed against the proteins of interest with a pro-
tein A-Tn5 (pA-Tn5) transposase fusion protein precomplexed with
barcoded oligonucleotides [54]. A recent variation of this method,
named nano-CUT&Tag (or nano-CT), proposes to use a nanobody
directly fused with Tn5 instead of a secondary antibody [56].

These single-cell approaches will enable characterization of the het-
erogeneity of several subpopulations in thousands of cells.
Analytical Advances

As described above, a large number of multiomics methods have
recently emerged that combine several modalities, such as transcrip-
tome, chromatin accessibility, and cell surface proteins. These
approaches have the potential to measure multiple types of data
simultaneously in each cell, revealing new information on differentia-
tion processes and cell fate. However, analyzing such data requires
powerful tools to extract relevant biological information. We now
emphasize some tools that we believe will be the most useful to study
erythropoiesis.

Data integration, data transfer, and trajectory analyses. Multio-
mics data analysis can be challenging owing to the complexity of the
sequencing information provided by multilayers of data. Further-
more, some pipelines are designed to handle paired or unpaired data.
Paired data refers to measurements of multiple modalities performed
simultaneously on the same samples, using approaches such as TEA-
seq [52]. Unpaired data, on the other hand, originate from different
techniques and/or different biological samples. It is important to
know which computational tools to use for incorporating all layers of
data [57]. Among the many available workflows that analyze multio-
mic data, the scVI-tools suite provides powerful computing pipelines
based on a combination of probabilistic approaches and machine
learning [45]. Here, we describe several of the scVI-tools (as well as
other tools) for multiomics analyses (Figure 1; Table 1).

CITEseq has gained popularity because of its efficiency and the
ability to utilize over a hundred antibodies [14]. However, it is
important to note that data analysis should not solely focus on the
scRNA-seq component. It is also not recommended to rely exclu-
sively on cell surface proteins for validation. ScVI-tools offers Total
Variational Inference (TotalVI), a joint probabilistic analysis that com-
bines both modalities to derive a joined representation [58]. TotalVI
has been designed to analyze CITEseq data using both sequencing
modalities (Table 1). The approach applies mathematical tools and
trains a model by machine learning using RNA and protein layers
with the option of adding a batch correction [58]. TotalVI also fea-
tures protein normalization to distinguish foreground from back-
ground, joint representation, and differential expression testing. Its
efficiency has already been shown by studying for example immune
cells in mice [59].

The Yosef group also recently developed the MultiVI pipeline [60].
MultiVI first focuses on two modalities: transcriptome and open chro-
matin modalities. It proposes to analyze gene expression and chroma-
tin opening with a deep generative model for probabilistic analysis.
The model is suitable for experiments involving simultaneous multi-
modal measurements and can also integrate a third modality, such as
cell surface proteins. Thus, it is ideal for performing analyses on data
from TEA-seq [52] or DOGMAseq [53] (Figure 1; Table 1). Further-
more, the model also offers the possibility of integrating nonpaired
data, and it can consider technical issues, such as background noise
and batch effect by integrating batch information, as also proposed
by TotalVI [58]. The batch information in TotalVI [58] and MultiVI
[60] pipelines enable a correction to be made to incorporate the data
correctly in a latent space, considering experimental differences
between samples.

Overall, the scVI-tools pipelines take the best of deep machine
learning by combining multiple modalities from different multiomics
techniques, making them a potent tool for analyzing complex data-
sets [45]. The authors have shown that their model can resolve the
heterogeneity of samples and lead to a better understanding of cell
fate decisions by integrating all modalities.

Machine learning not only integrates paired and unpaired data
but can also use multimodal data to perform data transfer on sam-
ples that lack one of the modalities. For example, scArches (Single-
Cell Architecture Surgery) can use a TotalVI model to extract pro-
tein measurements from CITEseq combined with gene expression
to train the model and then perform “surgery” for data transfer [61]
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(Table 1). Thus, it is possible to take the CITEseq data as a reference
model to be trained and matched on a query dataset with scRNA-
seq only. Then, the models are trained again to perform a data trans-
fer on the query dataset and give in silico protein values on a
scRNA-seq dataset while considering batch correction [61]. Using
these models, it is possible to analyze large datasets with multimodal-
ities and integrate other data sets from atlases to include more cells
or add missing information.

The above-described models are partly used to realize the
latent representation with multiple modalities. They can be com-
bined with additional computer tools that perform trajectory anal-
yses and deduce a pseudotime that represents, for example, cell
differentiation (Figure 2). Tools like PAGA [48] can analyze latent
space sets from TotalVI [58], MultiVI [60], or other pipelines and
deduce trajectories starting from a root cell. PAGA associates
each previously identified cluster with a node linked together by
weighted edges with the thickness of the ridges representing the
degree of connectivity between clusters [48]. The thicker the
edges, the greater the connections representing a statistical mea-
sure of the connectivity between the identified clusters. Cells are
then ordered according to their distance from the root cell. The
path established by PAGA then represents the average of all sin-
gle-cell courses passing through the corresponding cell clusters. It
is then possible to deduce the pseudotime from the root cell to
track the progression of differentiation (Figure 2).

Several pipelines have been described for data integration and tra-
jectory analyses. In addition to the methods described above, we
note the popular Seurat pipelines that also offer numerous tools for
analyzing multimodality data [46]. Seurat uses single modalities first
to create a single-modality latent space. The single modalities are then
integrated by identifying anchors to propose a new latent space com-
prising both modalities [46].
From lineage trajectories to gene regulatory networks. Trajec-
tory studies are not the only analyses that can result from the
sequencing of RNA and other modalities. Indeed, multimodality
sequencing can also be used to decipher the mechanisms underlying
gene regulation. We mention MIRA, an innovative pipeline based on
machine learning, which can analyze a latent space, such as MultiVI,
based on gene expression and chromatin opening modalities [62].
Interestingly, MIRA can perform a complete series of analyses from
clustering to latent representation, trajectories, pseudotime analysis,
and critical regulators identification (Figure 2; Table 1). This is another
efficient approach to analyzing multimodal data. For more details on
MIRA, please refer to the paper describing this pipeline [62].

In addition to trajectories, the establishment of gene regulatory net-
works (GRNs) can help to answer critical questions, such as identify-
ing transcription factors that regulate gene expression and better
understand the importance of chromatin structure [50] (Figure 2).
Here, we describe some selected approaches that have been used to
establish GRNs. First, we note that scRNA-seq is, for the most part,
sufficient to establish GRNs. However, including other modalities can
help to derive GRNs that are more precise and robust. Here, we
focus on three approaches: single-cell Multi-Task Network Inference
(sc-MTNI) [63], Dyctis [64] and Single-Cell rEgulatory Network
Inference and Clustering + (SCENIC+) [65]. These three pipelines
can use paired or unpaired scRNA-seq and scATAC-seq to infer
GRN (Figure 2; Table 1).
The first approach, sc-MTNI [63], uses single-cell data from multio-
mics and considers a cell lineage tree. It is a powerful tool to infer a
detailed gene regulatory network for each cell type on a previously
defined lineage trajectory. Sc-MTNI can also integrate paired,
unpaired, and/or bulk data to establish the final GRNs. The authors
have shown the robustness of their network by applying sc-MTNI to
a human hematopoietic dataset. Notably, sc-MTNI was able to iden-
tify new regulators linked to hematopoietic regulatory mechanisms
and confirm known hematopoietic regulators. Thus, sc-MTNI is an
effective tool for identifying the regulators that steer cells toward a
particular path.

The second approach, Dyctis [64], also uses scRNA-seq and scA-
TAC-seq data, but infers time-resolved GRNs using pseudotime infor-
mation and context-specific transcription factors footprints. In
addition, Dyctis provides a function to compare context-specific net-
works. Finally, Dyctis can identify TFs with changes in regulatory
activities but without changes in their expression levels.

The third approach, SCENIC+ [65], is the only method that
focuses on the inference of gene regulatory networks from enhancers
to create enhancer-based GRNs (eGRNs). Moreover, it can detect
the presence or absence of enhancers in every cell population identi-
fied. Notably, SCENIC+ uses a comprehensive database for TF bind-
ing motifs and includes a computational perturbation algorithm to
predict the effects of knocking out specific TFs on the GRN.

Thus, these three approaches to GRN inference have different
objectives and can help answer complementary biological questions
in gene regulation (Figure 2; Table 1).

CONCLUSION

The emergence of single-cell RNA-seq and multiomics approaches
has revolutionized our understanding of cellular and molecular mech-
anisms at the single-cell level. The limitations of bulk methods have
been overcome by the detailed characterization of cellular heteroge-
neity, particularly in complex processes, such as erythropoiesis.
Approaches such as CITE-seq, TEA-seq, and DOGMA-seq integrate
genome, proteome, and chromatin structure, offering more compre-
hensive insights into cellular mechanisms (Figure 1; Table 1).
Advanced analysis pipelines, such as Sc-VI, MIRA, and sc-MTNI, har-
ness the power of machine learning to integrate and interpret com-
plex multiomics data, revealing cellular trajectories, pseudotimes, and
GRNs (Figure 2). However, much remains to be done to derive
molecular information at the gene level and to address key questions,
such as the molecular underpinnings of cell fate decision at the gene
and chromatin levels in early progenitors. For this, new analysis meth-
ods to derive GRNs that incorporate additional information (TF bind-
ing, protein levels) as well as new analytical methods that allow
comparative analyses between cell trajectories or between experi-
mental conditions are warranted. The future lies in continuously
improving these techniques, enabling a deeper exploration of cellular
mechanisms and a more precise understanding of complex biological
processes.
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