
Nonetheless, the data presented suggest
that TSLPR represents a promising
immunotherapeutic target in a high-risk
and poor-prognosis subset of B-ALL, and
therefore merits further clinical development.
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Comment on Krivega et al, page 665

Pharmacologic control
of chromatin looping
-----------------------------------------------------------------------------------------------------

Marjorie Brand OTTAWA HOSPITAL RESEARCH INSTITUTE

In this issue of Blood, Krivega et al establish a new method to reactivate fetal
hemoglobin (HbF) production in adult human erythroid cells through
pharmacologic manipulation of chromatin looping at the b-globin locus.1

S ickle cell disease (SCD) and
b-thalassemia are widespread genetic

disorders that result from inherited mutations
in the adultb-globin gene. An important aspect
of SCD and b-thalassemia is that disease-
causing mutations affect the adult b-globin
gene but leave intact its fetal counterparts
Gg- and Ag-globin, a point that explains
why SCD and b-thalassemia patients first
experience major symptoms in late infancy
when the fetal g-globin genes become
developmentally extinguished.2 Furthermore,
rare mutations that lead to persistence of fetal
g-globin expression in adults significantly
ameliorate SCD and b-thalassemia symptoms,
highlighting the clinical benefits of elevated
levels of HbF.2 Therefore, a major research
objective is the development of methods to

reactivate fetal g-globin in adult erythroid
cells.

The b-like globin genes reside in a single
cluster where they are arranged in the order of
their expression during development. High-
level expression of these genes is mediated by
the locus control region (LCR), a distal array
of multiple enhancers that act in an additive
manner to increase the rate of transcriptional
elongation.3 During development, when the
embryonic, fetal, and adult b-globin genes
undergo sequential phases of expression
followed by gene silencing, the LCR alters its
spatial positioning within the nucleus to remain
in close proximity to the promoter of the
developmentally appropriate, active b-like
globin gene through a 3-dimensional looping of
chromatin.4 Although the mechanism through

which looping is established is not entirely
clear, the authors have previously identified
the Lim-domain binding 1 (LDB1) protein
as a key factor that mediates loop formation.5

Furthermore, it has been shown that in adult
erythroid cells, tethering the dimerization
domain of LDB1 to the fetal g-globin gene
promoters via an artificial zinc-finger protein
brings the LCR in close proximity to the
fetal genes and stimulates their expression.6

Although this shows that forced looping
through an artificial transcription factor allows
reactivation of HbF in adult erythroid cells
(see figure), such an approach requires genetic
manipulation of erythroblasts, which may
complicate its application in a clinical setting.

Here, Krivega et al describe a novel
pharmacologic approach to modulate b-globin
gene expression where they use a small
molecule inhibitor of the histone H3 lysine
9 (H3K9) methyltransferase enzymes
G9a and G9a-like protein (GLP) to
reactivate HbF production in adult erythroid
cells.1 Interestingly, the authors show that
this reactivation is associated with spatial
reconfiguration of the locus whereby the LCR
alters its nuclear positioning to gain proximity
to the fetal g-globin genes (see figure). This
finding is important because it provides proof-
of-principle that structural reconfiguration of
the b-globin locus can be achieved through
pharmacologic modification of its chromatin
state. In addition, the study provides new
insights into the mechanism of long-distance
enhancer-gene communication by showing
that the chromatin-modifying enzyme G9a,
previously shown to spread across theb-globin
locus,7 contributes to the regulation of
chromatin loop formation. This finding offers
the first clue that chromatin spreading and
looping may be functionally linked.

G9a and its paralog GLP are
methyltransferases that can mono- and di-
methylate H3K9. Furthermore, G9a and GLP
possess ankyrin repeat domains, which allow
them to bind to their own substrate, albeit with
different specificities (ie, H3K9me1 for GLP
and H3K9me2 for G9a). It has been previously
shown that G9a is recruited to the b-globin
LCR by the transcription factor NF-E2,
and spreads across the b-globin locus.7

Furthermore, knocking down G9a through
RNA interference in murine erythroid cells,7

or inhibiting its enzymatic activity in human
hematopoietic progenitors,8 leads to reactivation
of the embryonic/fetal b-like globin genes,
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suggesting that pharmacologic inhibition ofG9a
couldbeused tocounteract fetalg-globinsilencing.

To determine the phase of erythropoiesis
at which inhibition of G9a is most efficient to
increase levels of HbF, the authors used a 3-stage
ex vivo differentiation system with human
CD341 hematopoietic progenitors from adult
donors. They demonstrate that inhibition of
G9a/GLP methyltransferase activity with the
small molecule inhibitor UNC06389 leads to
a pronounced increase in HbF (up to 30% of
total hemoglobin) when applied at the time of
erythropoietin-mediated induction of erythroid
differentiation. This effect is mediated through
upregulationof fetalg-globin anddownregulation
of adult b-globin expression. At the molecular
level, the authors show that the drug leads to
a locus-wide decrease in H3K9me2, which is
accompanied by complex changes in G9a binding
(ie, increased binding at the fetal promoter,
decreased binding at the adult promoter, and no
change at the LCR). Similarly, they observed
a shift in binding of the looping factorLDB1 from
the adult to the fetal gene promoters. Finally, they
show that the fetal g-globin gene relocates to
achieve closer proximity to the LCR.1

Taken together, these results establish G9a
as amajor player in themaintenance ofg-globin
silencing in adult erythroid cells. Furthermore,
it suggests a mechanism whereby the G9a-
mediated H3K9me2 mark on the g-globin
promoter prevents spatial proximity with
the LCR through inhibiting binding of the
“looping factor” LDB1. Testing this model

will require additional experiments to
determine the sequential order of events
following H3K9 methyltransferase inhibition.

Finally, a surprising finding is that G9a
remains bound to the b-globin locus upon drug
treatment, despite a widespread loss of the
H3K9me2 mark. This result is at odds with
the currentmodel ofG9a spreading on chromatin
through its ankyrin domain-mediated recognition
of H3K9me2. However, it is consistent with the
absence of a visible phenotype in knock-in mice
carrying a mutant form of G9a that is unable to
bind to H3K9me2.10 Although these results
converge to suggest that the interaction of G9a
with its substrate does not play a dominant role
in the maintenance of G9a binding to chromatin
in vivo, we cannot exclude the possibility that
the interaction with H3K9me2 is important for
the initial establishment of G9a binding (ie,

spreading). A candidate factor for retaining G9a
binding to the b-globin locus in the absence of
H3K9me2 is G9a-heterodimerization partner
GLP, whose H3K9me1 binding activity appears
to play a dominant role in vivo.10 In that regard, it
will be interesting to analyze GLP binding and
H3K9me1enrichmenton theb-globin locusupon
inhibition of H3K9 methyltransferase activity.
Conflict-of-interest disclosure: The author
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Polymerized fibrin activates
glycoprotein VI
-----------------------------------------------------------------------------------------------------

Dominic W. Chung BLOODWORKS NORTHWEST RESEARCH INSTITUTE

In this issue of Blood, Mammadova-Bach et al show that polymerized fibrin binds to
the platelet receptor glycoprotein VI (GPVI), amplifying thrombin generation and
enhancing thrombus growth.1

Different approaches to reactivate fetal g-globin gene expression through alteration of chromatin looping. (A) Reactivation

of fetal g-globin transcription through the introduction of an artificial transcription factor that tethers the g-globin promoter to

the LCR as previously described.6 (B) Reactivation of fetal g-globin transcription through pharmacologic inhibition of H3K9

methyltransferases as described in Krivega et al. Professional illustration by Patrick Lane, ScEYEnce Studios.
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